

Mars MEDUSA Orbiter AE 4342 Team 6

Tim Chow Matthew Cook Michael Moody **Zachary Parham** Ananth Reddy **Alex Seigel Andrew Silverstein** Suhail Singh Andrej Šulek

Space Systems Design Course, Georgia Institute of Technology

Georgia Tech College of Engineering Daniel Guggenheim School of Aerospace Engineering

Overview

MEDUSA: Mars Exploration of Dust Storms and Atmosphere

Mars MEDUSA Orbiter

Science Investigation

Georgia Tech College of Engineering Daniel Guggenheim School of Aerospace Engineering

Mission Statement

MEDUSA will investigate the mechanisms of formation, composition, and seasonal changes of dust storms on Mars; this will be achieved through Radiometers and Multiangle Imaging SpectroRadiometers.

MEOLINE Basestore

Science Background

The Significance of studying Martian Dust Storms

- Better understanding of Martian Climate
- Better understanding of the mechanisms of climate change for Earth applications

Mars Exploration Program Analysis Group interests

- Locations and times of interest for the creation of dust storms
- Analysis of aerosol type, concentration, and movement through dust storms
- How dust storms carry dust and water through the atmosphere and across the surface

Leading Theory

- Atmospheric Factors (heat, pressure) cause dust storms to form
- These dust storms transfer water ice

Credit: NASA / JPL / MSSS

MECHINA BOLST STURIOUS

MEDUSA Science

Goal: Explore the formation and impact of dust storms on Mars

Objectives:

- Determine how and under what conditions Martian dust storms form and propagate using MCS and MISR
- Determine how particles move within the dust storm using MISR
- Determine the composition of Martian dust storms using MISR
- Determine if and how H2O is transferred via dust storms on Mars using MISR

Sol 1997

Credit: NASA / JPL / MSSS / Justin Cowart / Emily Lakdawalla

Science Traceability

NASA Science Goals	Investigation Science Objectives	Science Measurement Requirement	nts	Instrument Performance				Mission Requirements (Science Driven)	
		Physical Parameters	Observable	Parameters		Requirement	Projected		
		Topographic Features	Morphological Feature	Vertical Resolution	Horizontal Resolution	measure topographical feature size, longitude, and latitude with at least 5 km size	topographic map of mars	Satellite with an orbital inclination angle of 75 degrees	
		Temperature	Wavelength: Infrared	Temperature		-153 C to 35 C	-161 C to 37 C		
1) Dete topogra atmost	1) Determine the topographic and atmospheric conditions	Humidity	Wavelength: Visible, Infrared	Humidity		0-10 g*m^-3	0-20 g*m^-3	Establish Link with DSN	
		Pressure	Wavelength: Visible, Infrared	Pressure		0-1200 Pa	0-1500 Pa		
	that create dust storms	Wind Speed and Direction	Wavelength: Visible, Infrared	Position	Velocity	0-70 km/hr	0-150 km/hr	Handle data rate 9.0 Mbps	
1) MEPAG Ref: Goal IV,	2) Characterize the motion and evolution of	Movement of Dust Storms	Movement of storm center of mass along surface of mars	Change in position	Time				
Investigation B3.1: Globally monitor the dust and aerosol activity	dust storms	Growth of Dust Storm	Surface area coverage change	Vertical Resolution	Horizontal Resolution	diameter and surface area data over time	diameter and surface area data over time	Global Coverage every 6-7 days	
multiple locations across the globe, especially during large dust events,	3) Determine the regularity of dust storms	Frequency of dust storms	Visual, temporal	Vertical Resolution	Horizontal Resolution	Identify dust storms as they're created	Identify dust storms as they're created		
to create a long-term dust activity climatology (>10 Mars years) capturing the frequency of all events (including small ones) and defining the duration, horizontal extent, and evolution of extreme events. (High Priority)	 Determine whether the characteristics of Mars' orbit around the sun affect the development of dust storms. 	Angular velocity of Mars with respect to the Sun,	Location of Mars on it's orbit	Instrument and Communications	elemetry Data	Mars orbital conditions with respect to the Sun	There have been predictions that as Mars approaches perigee of orbit the dust storms increase	Mission lifespan of >10 years	

Science Traceability

NASA Science Goals	Investigation Science Objectives	Science Measurement Req	uirements	Instrument Performance				Mission Requirements (Science Driven)
		Physical Parameters	Observable	Parameters		Requirement	Projected	
2) MEPAG Ref: Goal II, Investigation A1.2: Measure water and carbon dioxide (clouds and vapor) and dust distributions in the lower atmosphere and determine	5) Determine composition and distribution of particles in the lower atmosphere	Dust Particle Composition	Light absorbtion: spectroscopy	Concentration of water	Concentration of dust	Percent composition makeup (. 01%)	Percent chemical composition about 0.001 %	MISR: 400-900 nm MCS: 0.3-45 um
their fluxes between polar, low- latitude, and atmospheric reservoirs. (Higher Priority) 3) MEPAG Ref: Goal IV, Investigation A1.2: At all local	6) Characterize the vertical and horizontal movement of dust, water, and carbon dioxide through the Martian	Verticle movement of particles	Wavelength: Visible, Infrared	Optical		0-30 m/s	0-50 m/s	Vertical Resoulution: <5 km Horizontal Resolution: <300km
times, make long-term (>5 Mars years) global measurements of the vertical profile of aerosols (dust and water ice) between the surface >60 km with a vertical resolution <=5 km and a horizontal resolution of <300 km. These observations should include the optical properties, particle sizes, and number densities. (High Priority)	aunosphere	Horizontal movement of particles	Visual Movement of dust clouds	Optical		0-30 m/s	0-50 m/s	Mission lifespan >5 years

Mars MEDUSA Orbiter

Mission Implementation

Georgia Tech College of Engineering Daniel Guggenheim School of Aerospace Engineering

MEOLEN Basistore

Science Instruments

Multi-angle Imaging SpectroRadiometer

- 9 angled pushbroom spectroradiometers
- Captures images in 4 spectral bands from infrared to visible
- Allows analysis of aerosols, winds, and clouds

Credit: NASA / Caltech / JPL

Science Instruments

Mars Climate Sounder (MCS)

- Captures images in 9 spectral bands from infrared to visible
- Measures temperature, pressure, water vapor, and dust in layers of the atmosphere

Credit: NASA / Caltech / JPL

Spacecraft Overview

Communications Dish -

Pressurant

Tanks

Propellant Tanks

Star Sensor

Flight Computer

- Sun Sensor

Orbital Insertion Thrusters

MISR

Solar Panels

Concept of Operations

Launch Window: October 22nd, 2026 to November 7th, 2026 Arrival Window: August 4th, 2027 to September 4th, 2027

Launch Window: October 22nd, 2026 to November 7th, 2026 Arrival Window: August 4th, 2027 to September 4th, 2027

- Type II heliocentric transfer orbit
- Estimated TOF: 287 days
- 3 Main Burns
 - \circ Total Δv of major burns ~ 1.6 km/s
- Additional 0.1 km/s added for corrections

- Capture in highly elliptical insertion orbit
- Lower periapsis, raise inclination
- Raise periapsis, circularize orbit
 - 700 km, i = 75°
 - 10 year lifespan
 - EOL: relay satellite

GNC & ADCS

MECHUS ME

Attitude Control

- 4x Reaction Wheels
 - Slew rate: 0.045 deg/s

Sensors

0

0

0

- 2x Inertial Measurement Unit (IMU)
- 2x Star tracker
- 12x Sun Sensor

Star tracker Credit: Leonardo Company

• Orbit

.

- Period: 133 minutes
- 11 orbits per day
- Time per Eclipse: 41 minutes

• Three Power Modes:

- Standby/Eclipse
 Communications
- Communications
- Data Collection

Data Collection Mode 745 W Thermal Control 44 W 7.1%

Power

Power Subsystem 266 W 43.1%

Communications 318 W 40.3%

ADCS 107 W

13.5%

Power

• Triple Junction Solar Cells

- Area: 20 m²
- Mass: 17 kg
- Power Generated: 1200 W

Lithium Ion Batteries

- 10 years: ~40,000 Cycles
- Depth of Discharge: 30%
- Number of Cells: 99 cells
- Mass: 11 kg

Power Management and Distribution System

- Regulated Direct-Energy Transfer
 - Higher Efficiency
 - Large power variation
- Power: 160 W
- Mass: 54 kg

Wiring

- Power: 60 W
- Mass: 33 kg

Propulsion

- Propellant Hydrazine
- Pressurizer Helium
- Thrusters:
 - Four MR-107S @ 270 N used for Complete insertion burn in 24 min
 - Four MR-106E @ 22 N used for Trajectory corrections
 - Eight MR-103D @ 0.9 N used for Attitude control redundancy
- Tanks:
 - 2 Propellant Tanks with mass of 20 kg each
 - 2 Pressure Tanks with mass of 13 kg each

Propulsion

×.

Thermal

- Ideal operating temperature = 10 °C
- Pre trimmed thermal balance temperature
 = 367 K = 94 °C
- Radiators used to trim temperature to permissible component range
- 15 layer MLI blanket used on outside of spacecraft
- Heaters applied to solar panels, propulsion tanks, antennas, gimbals, IMU, star tracker

Credit: John Rossie of AerospaceEd.org

Structural Properties

- Potential loads: Launch, gravity, radiation pressure, aerobraking
- Aluminum alloy honeycomb structure
- Carbon composites such as graphite epoxy applied for additional support
- Titanium alloys used for fuel tank and smaller components

Credit: Argosy International

Mass Breakdown

Dry Mass Range: 500-1000kg

Dry Mass: 801 kg

Propellant Mass: 1000 kg

LV Adapter: 166.5 kg

LV Capacity: 3000 kg

1.0 Payload	172.7	172.7
2.0 Spacecraft Bus (dry)		628.49
2.1 Propulsion	90.19	
2.2 ADCS	56.17	
2.3 Communications	60.72	
2.4 C&DH	35.2	
2.5 Power	121.73	
2.6 Structure	240.44	
2.7 Thermal Control	24.04	
3.0 Spacecraft Dry Mass		801.19
4.0 Consumables		0
5.0 Propellant		1000
6.0 Loaded Mass		1801.19
7.0 Kick Stage		0
8.0 Injected Mass		1801.19
9.0 Lauch Vehicle Adapter		166.5
10.0 Boosted Mass		1967.69
11.0 Margin		1032.31
12.0 Total LV Capacity		3000

Mass by Subsystem

Payload
 Propulsion
 ADCS
 Comms
 C&DH
 Power
 Structure
 Thermal Control

Communications

	Uplink Frequency	Downlink Frequency	Transmitter Gain	Receiver Gain	Free Path Space Loss	Earth Atmospheric Loss	Bandwidth	Uplink C/N	Downlink C/N	Data-Rate	Link Margin
Ka-Band	· · · · · · · ·		and the second	1. P. 1					14.3-	1	
(HGA)	N/A	31.1 GHz	57.9 dBi	79.014 dBi	282.3-290.2 dB	2 dB	500 MHz	N/A .	28.79 dB	.005-6 Mbs	6.1 dB
X-Band											
(HGA)	7.1 GHz	8.4 GHz	49 dBi	67.64 dBi	269-276.6 dB	<1 dB	20 Hz	18.79 dB	28.84 dB	.001-4Mbs	18.6 dB

Link Budget

Link Schedule

Launch:

- Downlink lifeline communication begins ~ 1 hr after launch, ~5 minutes prior to launch vehicle separation on LGA
- When signal is received, DSN uplink is confirmed, doppler/turnaround
- ranging is defined, and commandability is confirmed.

Transit:

- Downlink lifeline communication continues including trajectory data and spacecraft health on HGA
- Command uplink for trajectory correction and anomaly adjustment by DSN Mars Orbit Insertion.
 - Downlink insertion progress, health, and anomaly data by the LGA
 - Command uplink to perform insertion maneuvers and anomaly adjustment by DSN

Mars Orbit

- Spacecraft downlink health data (X-Band) and and collected instrument data (Ka-Band) when line of sight is visible on HGA (LGA if in low power mode).
- Command uplinked for trajectory correction, anomaly adjustment, and to transition between mission phases by DSN

Communication Subsystems

High-gain Antenna

• Ka Band and X band 2x Low-Gain Antenna

- X-Band
- Only used for insertion and emergencies

4x Amplifiers

- Traveling Wave Tube Amplifiers
- Two for Ka-band (35W)
- Two for X-Band (100)

2x Transponders

 General Dynamics Small Deep Space Transponder

Ultra Stable Oscillators

- Take on causes for frequency instability in circuits
- High stability vs. temperature 2x Electra Proximity Payload
 - Government provided
 telecommunications platform

C&DH Schematic

- Oven Controlled Crystal Oscillator (OCXO)
- Data Processing Unit (DPU)
- Integrated Electronics Module (IEM)
- SpaceWire

Computing

- Processor: RAD5500
- Power Distribution Unit (PDU)
- Oven Controlled Crystal Oscillator (OCXO)

Spacecraft Integration

System Testing & Assembly Order:

- 1. Power
- 2. ACDS
- 3. Science Instruments
- 4. Structure
- 5. Solar Array
- 6. Communication
- 7. Propulsion

MRO Science Instrument Integration Credit: NASA

Structural Assembly:

Gimbals

Solar arrays
 HGA

Type 22 High Gain Antenna Pointing Assembly Credit: MOOG

Type 1 Solar Array Drive Assembly Credit: MOOG

Launch Vehicle

- Medium Class Launch Vehicle
- Employ 5m Fairing
- Potential Option: Atlas V 5xx
- Two stage expendable rocket system
- Flexible with SRB usage; engine configurations, and payload fairing selection

Ground Systems & Operations

Goddard Space Flight Center Operations Room Credit: NASA Goddard/Pat Izzo Ground Station (ie. Goddard Space Flight Center)

- 1. sending commands
- 2. anomaly resolution
- 3. spacecraft health monitor
- 4. data processing
- Eleven 90-minute passes per day

Distributed Active Archive Center (NASA's DAAC)

1. data storage

Spacecraft Testing

Category	System/Structure Tested	Test Type				
	Color Donald	Solar Energy Absorption				
	Solar Panels	Folding/Unfolding/				
		Maneuverability				
		Data Uplink/Downlink				
		Enxtending/Retracting/				
	Antennas/Communication	Maneuverability				
Functional		External Radio Signal	1			
		Sheilding				
	Thrustore	Thrust Stand				
	Inrusters	Exhaust Duct	1			
	Pattarias	Life/Fatigue				
	Datteries	Power Output				
	Electrical	Wiring Checks				
	Cameras	Resolution				
	Structural Material	Tensile				
	Structural Material	Torsional				
		Space				
Environmental		Thermal				
Environmental	Entire Spacecraft	Space Dust Management	10			
	Entire spacecraft	Solar Radiation				
Laurah		Pyroshock				
Launch		Association				

Credit: National Technical Systems

Mars MEDUSA Orbiter

Project Management

Georgia Tech College of Engineering Daniel Guggenheim School of Aerospace Engineering

Organizational Structure

Mars MEDUSA Orbiter Cost & Scheduling

Georgia Tech College of Engineering Daniel Guggenheim School of Aerospace Engineering

Cost

 Unmanned Space Vehicle Cost Model (USCM8) parametric estimation

- NASA Instrument Cost Model (NICM) for science instruments
- FY2021 Estimated Cost:
 - \$491,425,375.1

Risk Matrix

	Almost Impossible	Unlikely	Could Occur	Known to Occur	Common
Catastrophic	5	10 Risk 4	15 Risk 2 Risk 3	20 Risk 1	25
Major	4	8	12	16	20
Moderate	3	6 Risk 6	9	12	15
Minor	2	4	6	8	10 Risk 5
Insignificant	1 Risk 7	2	3	4	5

S E V E R I T V

PROBABILITY

Mitigation: High Risks

- Risk 1 ADCS Failure (Risk Value: 20)
 - Redundancy in system components
 - Testing to simulate operational environment
- Risk 2 Transponder Failure (15)
 - MEDUSA contains a backup transponder cross linked into the system should one fail.
- Risk 3 Failure to Deploy Solar Arrays (Risk Value: 15)
 - More accurate environmental testing
 - While in orbit:
 - Move mechanism up and down to "unsnag"
 - Fire thrusters to shake orbiter

	Almost Impossible	Unlikely	Could Occur	Known to Occur	Common
Catastrophic	5	10 Risk 4	15 Risk 2 Risk 3	20 Risk 1	25
Major	4	8	12	16	20
Moderate	3	6 Risk 6	9	12	15
Minor	2	4	6	8	10 Risk 5
nsignificant	1 Risk 7	2	3	4	5

Mitigation: Medium Risks

- Risk 4 Failure of Science Instrumentation (Risk Value: 10)
 - One fails:
 - Continue mission using remaining payload
 - **Both fail:**
- Revert to relay satellite
 Risk 5 Unrealistic Budget (Risk Value: 10)
 Mission descope threshold science mission

	Almost Impossible	Unlikely	Could Occur	Known to Occur	Common
Catastrophic	5	10 Risk 4	15 Risk 2 Risk 3	20 Risk 1	25
Major	4	8	12	16	20
Moderate	3	6 Risk 6	9	12	15
Minor	2	4	6	8	10 Risk 5
Insignificant	1 Risk 7	2	3	4	5

Schedule

Acknowledgements

Dr. Christian for his instruction and feedback throughout the semester

TA Stef Crum for his guidance on labs

The New SMAD Editors: Wertz, Everett, Puschell

MISR team, MCS team, Mars Reconnaissance Team

Mars Odyssey, TERRA orbiter

Mars MEDUSA Orbiter Thank You

Georgia Tech College of Engineering Daniel Guggenheim School of Aerospace Engineering

Mars MEDUSA Orbiter Appendix

Georgia Tech College of Engineering Daniel Guggenheim School of Aerospace Engineering

Mass Budget

		Level 2		
	CBE (kg)	Cont.	Allocated	Level 1
I.O Payload				172.7
1.1 MISR	148	10%	162.8	
1.2 MCS	9	10%	9.9	
2.0 Spacecraft Bus (dry)				628.49
2.1 Propulsion				90.19
2.1.1 Propellant Tanks (x2)	40.4	10%	44.44	
2.1.2 Pressurized Tanks (x2)	26	10%	28.6	
2.1.3 Insertion Burn Thrusters (x4)	4.04	10%	4.44	
2.1.4 Trajectory Correction Thrusters (x4)	1.92	10%	2.11	
2.1.5 Attitude Adjustment Thrusters (x8)	2.64	10%	2.9	
2.1.6 Pressurizer	7	10%	7.7	
2.2 ADCS				56.17
2.2.1 IMU (x2)	1.5	10%	1.65	
2.2.2 Star Trackers (x2)	5.2	10%	5.72	

2.2.3 Sun Sensors (x12)	24.36	10%	26.8	
2.2.4 Reaction Wheels (x4)	20	10%	22	
.3 Communications				60.72
2.3.1 X-band Transponder				
2.3.1.1 SDSTs (x2)	5.8	10%	6.38	
2.3.1.2 4x Frequency Multiplier	0.1	10%	0.11	
2.3.1.3 Additional Components	0.5	10%	0.55	
2.3.2 Traveling-wave tube amplifiers				
2.3.2.1 X-band TWTA (x2)	1.9	10%	2.09	
2.3.2.2 Ka-Band TWTA (x2)	1.6	10%	1.76	
2.3.2.3 X-Band Power Converters	3	10%	3.3	
2.3.2.4 Ka-Band Power Converters	1.5	10%	1.65	
2.3.2.5 Diplexers	1.8	10%	1.98	
2.3.2.6 Waveguides	1.5	10%	1.65	
2.3.2.7 Other Microwave Components	1.4	10%	1.54	
2.3.2.8 Misc. TWTA Hardware	0.2	10%	0.22	

Mass Budget cont.

2.3.3 X-band & Ka-band Antennas					2.5.3 PMAD	56	10%	61.6	
2.3.3.1 HGA Prime Reflector	19.1	10%	21.01		2.5.4 Wiring	29.13	10%	32.04	
2.3.3.2 Antenna Feed Assembly	1.6	10%	1.76		2.6 Structure				240.44
2.3.3.3 LGAs and Polarizers	0.8	10%	0.88		2.6.1 Primary Aluminum Prism	162	10%	178.2	
2.3.3.4 Misc. Antenna Hardware	1.1	10%	1.21		2.6.2 Gimbals and Secondary Structures	56.58	10%	62.238	
2.3.4 USOs	1.7	10%	1.87		2.7 Thermal Control				24.04
2.3.5 UHF					2.7.1 Heaters, Radiators, Insulation	21.85	10%	24.04	
2.3.5.1 Electra Transceivers (x2)	10.1	10%	11.11		3.0 Spacecraft Dry Mass	728.36			801.19
2.3.5.2 UHF Antenna & Radome	1.4	10%	1.54		4.0 Consumables				0
2.3.5.3 String Switch	0.1	10%	0.11		5.0 Propellant				1000
2.4 C&DH				35.2	6.0 Loaded Mass				1801.19
2.4.1 DPU (x2)	10	10%	11		7.0 Kick Stage				0
2.4.2 IEM (x2)	18	10%	19.8		8.0 Injected Mass				1801.19
2.4.3 Misc. Computer Components	4	10%	4.4		9.0 Lauch Vehicle Adapter				166.5
2.5 Power				121.73	10.0 Boosted Mass				1967.69
2.5.1 Batteries	9.2	10%	10.12		11.0 Margin				1032.31
2.5.2 Solar Panels	16.34	10%	17.97		12.0 Total LV Capacity				3000

Cost

/	+ M	
(
• (+		
	AB QUET STOR	IORONO.

WBS Element	Non-recurring (\$K)	Recurring (\$K)	Total Cost (\$K)
1.1.1/1.1.2 Structure/Thermal Subsystem	30276.31984	6264.72	36541.03984
1.1.3 ADCS	16038	8040.221469	24078.22147
1.1.4 Electrical Power Subsystem	12094.83	6094.44	18189.27
1.1.5 TT&C	26916	5379.887465	32295.88746
1.2.1 Communications	42827.4	13097.7	55925.1
			NRE + 1st Unit
1.2.2 MISR (Optical Planetary Payload)			Cost
1.2.2.1 Fabrication			40597.98891
1.2.2.2 Management			4048.722626
1.2.2.3 Systems Engineering			4753.211734
1.2.2.4 Product Assurance			3137.306378
1.2.2.5 Integration and Test			6377.999112
			NRE + 1st Unit
1.2.2 MCS (Optical Planetary Payload)			Cost
1.2.2.1 Fabrication			7431.850077
1.2.2.2 Management			702.3193334
1.2.2.3 Systems Engineering			1095.212286
1.2.2.4 Product Assurance			633.5363089
1.2.2.5 Integration and Test			1153.5629
1.3 Integration, Assembly, and Test	30275.0876	19251.85058	49526.93818
4.0 Program Level	66234.90512	15879.50562	82114.41074
5.0 Launch Operations and Orbital Support		5850	5850
6.0 Aerospace Ground Equipment	28040.89308		28040.89308
Total Cost (FY2010)	402493.4704	Total Cost (FY2021)	491425.3751

Risk Mitigation

. ADCS Failure (Risk Value: 20)

- a. Redundancy in system components
- b. Testing to simulate operational environment
- 2. Transponder Failure (15)
 - a. MEDUSA contains a backup transponder cross linked into the system should one fail
- 3. Failure to Deploy Solar Arrays (Risk Value: 15)
 - a. More accurate environmental testing
 - b. While in orbit:
 - i. Move mechanism up and down to "unsnag"
 - ii. Fire thrusters to shake orbiter
- 4. Failure of Science Instrumentation (Risk Value: 10)
 - a. One fails:
 - i. Attempt to continue mission using other payload b. Both fail:
 - i. Revert to being relay satellite
- 5. Unrealistic Budget (Risk Value: 10)
- a. Mission descope fallback to threshold mission6. Unplanned Loss of Contact (Risk Value: 6)
 - a. Extended Data storage
 - b. At threshold enter Safe Mode
 - c. Comms system to Wideband mode
 - d. Emergency use of 70-m DSN
- 7. Biological Contamination Risk (Risk Value:1)
 - a. Assembly in clean room