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Mission Statement
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MEDUSA will investigate the mechanisms of formation,

composition, and seasonal changes of dust storms on

Mars; this will be achieved through Radiometers and Multi-

angle Imaging SpectroRadiometers.



Science Background
The Significance of studying Martian Dust Storms

● Better understanding of Martian Climate

● Better understanding of the mechanisms of climate 

change for Earth applications

Mars Exploration Program Analysis Group interests

● Locations and times of interest for the creation of 

dust storms

● Analysis of aerosol type, concentration, and 

movement through dust storms

● How dust storms carry dust and water through the 

atmosphere and across the surface

Leading Theory

● Atmospheric Factors (heat, pressure) cause dust 

storms to form

● These dust storms transfer water ice 
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Credit: NASA / JPL / MSSS



MEDUSA Science
Goal: Explore the formation and impact of dust storms on Mars
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Objectives:
● Determine how and under what 

conditions Martian dust storms form 
and propagate using MCS and MISR

● Determine how particles move within 
the dust storm using MISR

● Determine the composition of Martian 
dust storms using MISR

● Determine if and how H2O is 
transferred via dust storms on Mars 
using MISR

Credit: NASA / JPL / MSSS / Justin Cowart / Emily Lakdawalla



Science Traceability
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Science Traceability
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Science Instruments
Multi-angle Imaging SpectroRadiometer

● 9 angled pushbroom spectroradiometers

● Captures images in 4 spectral bands from 
infrared to visible

● Allows analysis of aerosols, winds, and 
clouds
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Credit: NASA / Caltech / JPL



Science Instruments
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Mars Climate Sounder (MCS)

● Captures images in 9 spectral bands from 
infrared to visible 

● Measures temperature, pressure, water 
vapor, and dust in layers of the atmosphere

Credit: NASA / Caltech / JPL
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Concept of Operations
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Trajectory
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Launch Window:
October 22nd, 2026 to 
November 7th, 2026

Arrival Window:

August 4th, 2027 to 

September 4th, 2027



Trajectory
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November 7th, 2026
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Trajectory
● Type II heliocentric transfer orbit

● Estimated TOF: 287 days

● 3 Main Burns

○ Total Δv of major burns ~ 1.6 km/s

● Additional 0.1 km/s added for corrections



Trajectory
● Capture in highly elliptical 

insertion orbit

● Lower periapsis, raise 

inclination

● Raise periapsis, circularize 

orbit

○ 700 km, i = 75°

○ 10 year lifespan

○ EOL: relay satellite



GNC & ADCS
● Attitude Control

○ 4x Reaction Wheels

■ Slew rate: 0.045 deg/s
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● Sensors
○ 2x Inertial Measurement Unit (IMU)

○ 2x Star tracker

○ 12x Sun Sensor

Star tracker

Credit: Leonardo Company

Reaction Wheel

Credit: SpaceTeq



Power
● Orbit

○ Period: 133 minutes

○ 11 orbits per day

○ Time per Eclipse: 41 

minutes

● Three Power Modes:
○ Standby/Eclipse

○ Communications

○ Data Collection
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Power
● Triple Junction Solar Cells

○ Area: 20 m2

○ Mass: 17 kg
○ Power Generated: 1200 W

● Lithium Ion Batteries
○ 10 years: ~40,000 Cycles
○ Depth of Discharge: 30%
○ Number of Cells: 99 cells
○ Mass: 11 kg

● Power Management and Distribution System
○ Regulated Direct-Energy Transfer

■ Higher Efficiency
■ Large power variation

○ Power: 160 W
○ Mass: 54 kg

● Wiring
○ Power: 60 W
○ Mass: 33 kg
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Propulsion
● Propellant - Hydrazine

● Pressurizer - Helium

● Thrusters:
○ Four MR-107S @ 270 N used for Complete insertion burn in 24 min

○ Four MR-106E @ 22 N used for Trajectory corrections

○ Eight MR-103D @ 0.9 N used for Attitude control redundancy

● Tanks:
○ 2 Propellant Tanks with mass of 20 kg each

○ 2 Pressure Tanks with mass of 13 kg each

21Credit: Aerojet Rocketdyne



Propulsion

22Valve diagram



Thermal
● Ideal operating temperature = 10 °C

● Pre trimmed thermal balance temperature 

= 367 K = 94 °C

● Radiators used to trim temperature to 

permissible component range

● 15 layer MLI blanket used on outside of 

spacecraft

● Heaters applied to solar panels, 

propulsion tanks, antennas, gimbals, IMU, 

star tracker 
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Credit: John Rossie of AerospaceEd.org



Structural Properties
● Potential loads: Launch, gravity, radiation 

pressure, aerobraking

● Aluminum alloy honeycomb structure

● Carbon composites such as graphite epoxy 

applied for additional support

● Titanium alloys used for fuel tank and smaller 

components
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Credit: Argosy International



Mass Breakdown
Dry Mass Range: 500-1000kg

Dry Mass: 801 kg

Propellant Mass: 1000 kg

LV Adapter: 166.5 kg

LV Capacity: 3000 kg 
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Mass by Subsystem
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Communications
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Uplink 

Frequency

Downlink 

Frequency

Transmitter 

Gain

Receiver 

Gain

Free Path 

Space Loss

Earth 

Atmospheric 

Loss

Bandwidth
Uplink 

C/N

Downlink 

C/N
Data-Rate Link Margin

Ka-Band

(HGA) N/A 31.1 GHz 57.9 dBi 79.014 dBi 282.3-290.2 dB 2 dB 500 MHz N/A

14.3-

28.79 dB .005-6 Mbs 6.1 dB

X-Band 

(HGA) 7.1 GHz 8.4 GHz 49 dBi 67.64 dBi 269-276.6 dB <1 dB 20 Hz 18.79 dB 28.84 dB .001-4Mbs 18.6 dB

Link Budget



Link Schedule
1. Launch: 

● Downlink lifeline communication begins ~ 1 hr after launch, ~5 minutes 

prior to launch vehicle separation on LGA

● When signal is received, DSN uplink is confirmed, doppler/turnaround 

ranging is defined, and commandability is confirmed.

1. Transit:

● Downlink lifeline communication continues including trajectory data and 

spacecraft health on HGA

● Command uplink for trajectory correction and anomaly adjustment by DSN

1. Mars Orbit Insertion:

● Downlink insertion progress, health, and anomaly data by the LGA

● Command uplink to perform insertion maneuvers and anomaly adjustment 

by DSN

1. Mars Orbit

● Spacecraft downlink health data (X-Band) and and collected instrument 

data (Ka-Band) when line of sight is visible on HGA (LGA if in low power 

mode).

● Command uplinked for trajectory correction, anomaly adjustment, and to 

transition between mission phases by DSN 
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Communication Subsystems
High-gain Antenna 

● Ka Band and X band

2x Low-Gain Antenna
● X-Band 

● Only used for insertion and 

emergencies

4x Amplifiers
● Traveling Wave Tube Amplifiers

● Two for Ka-band (35W)

● Two  for X-Band  (100)

2x Transponders
● General Dynamics Small Deep 

Space Transponder

Ultra Stable Oscillators
● Take on causes for frequency 

instability in circuits

● High stability vs. temperature

2x Electra Proximity Payload
● Government provided 

telecommunications platform
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C&DH Schematic
● Oven Controlled Crystal 

Oscillator (OCXO)

● Data Processing Unit 

(DPU)

● Integrated Electronics 

Module (IEM)

● SpaceWire

30



Computing
● Processor: RAD5500

● Power Distribution Unit 

(PDU)

● Oven Controlled Crystal 

Oscillator (OCXO)
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Spacecraft Integration
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System Testing & Assembly Order:

1. Power

2. ACDS

3. Science Instruments

4. Structure

5. Solar Array

6. Communication

7. Propulsion

Structural Assembly:

Gimbals 

1. Solar arrays

2. HGA

Type 22 High Gain Antenna Pointing Assembly

Credit: MOOG

Type 1 Solar Array Drive Assembly

Credit: MOOG

MRO Science Instrument Integration

Credit: NASA



Launch Vehicle
● Medium Class Launch 

Vehicle

● Employ 5m Fairing

● Potential Option: Atlas V 

5xx 

● Two stage expendable 

rocket system

● Flexible with SRB usage, 

engine configurations, 

and payload fairing 

selection

33
Atlas V

Credit: ULA



Ground Systems & Operations

Ground Station (ie. Goddard Space Flight Center)

1. sending commands

2. anomaly resolution 

3. spacecraft health monitor

4. data processing

❖ Eleven 90-minute passes per day

Distributed Active Archive Center (NASA’s DAAC)

1. data storage

34

Goddard Space Flight Center Operations Room
Credit: NASA Goddard/Pat Izzo



Spacecraft Testing
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Credit: National Technical Systems
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Organizational Structure
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Cost
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● Unmanned Space Vehicle Cost Model (USCM8) parametric 

estimation

● NASA Instrument Cost Model (NICM) for science instruments

● FY2021 Estimated Cost:
○ $491,425,375.1

$500 million cap



Risk Matrix

40

Almost 

Impossible

Unlikely Could Occur Known to 

Occur

Common

Catastrophic 5 10

Risk 4

15

Risk 2

Risk 3

20

Risk 1

25

Major 4 8 12 16 20

Moderate 3 6

Risk 6

9 12 15

Minor 2 4 6 8 10

Risk 5

Insignificant 1
Risk 7

2 3 4 5
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Mitigation: High Risks
● Risk 1 - ADCS Failure (Risk Value: 20)

○ Redundancy in system components

○ Testing to simulate operational environment

● Risk 2 - Transponder Failure (15)

○ MEDUSA contains a backup transponder 

cross linked into the system should one fail

● Risk 3 - Failure to Deploy Solar Arrays 

(Risk Value: 15)

○ More accurate environmental testing

○ While in orbit:

■ Move mechanism up and down to 

“unsnag”

■ Fire thrusters to shake orbiter
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Mitigation: Medium Risks
● Risk 4 - Failure of Science Instrumentation 

(Risk Value: 10)

○ One fails:

■ Continue mission using 

remaining payload

○ Both fail:

■ Revert to relay satellite

● Risk 5 - Unrealistic Budget (Risk Value: 10)

○ Mission descope - threshold science 

mission
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Schedule
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DDT&E

Operations

Cruise
Orbit 

Transitio
n

Science 
Mission

Milestones

Prelim 
Design

(10 years)

Assembly 
& Test

Final Design 
& Fab

Technology 
Development
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Mass Budget
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Mass Budget cont.
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Cost
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Risk Mitigation
1. ADCS Failure (Risk Value: 20)

a. Redundancy in system components

b. Testing to simulate operational environment

2. Transponder Failure (15)
a. MEDUSA contains a backup transponder cross linked into the system should one fail

3. Failure to Deploy Solar Arrays (Risk Value: 15)
a. More accurate environmental testing

b. While in orbit:

i. Move mechanism up and down to “unsnag”

ii. Fire thrusters to shake orbiter

4. Failure of Science Instrumentation (Risk Value: 10)
a. One fails:

i. Attempt to continue mission using other payload

b. Both fail:

i. Revert to being relay satellite

5. Unrealistic Budget (Risk Value: 10)
a. Mission  descope - fallback to threshold mission

6. Unplanned Loss of Contact (Risk Value: 6)
a. Extended Data storage

b. At threshold enter Safe Mode

c. Comms system to Wideband mode

d. Emergency use of 70-m DSN

7. Biological Contamination Risk (Risk Value:1)
a. Assembly in clean room
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