

Mars MEDUSA Orbiter AE 4342 Team 6

Tim Chow Matthew Cook Michael Moody Zachary Parham Ananth Reddy Alex Seigel Andrew Silverstein Suhail Singh Andrej Šulek

Space Systems Design Course, Georgia Institute of Technology

Georgia Tech College of Engineering Daniel Guggenheim School of Aerospace Engineering

Overview

MEDUSA: Mars **E**xploration of **Du**st **S**torms and **A**tmosphere

Mars MEDUSA Orbiter

Science Investigation

Georgia Tech College of Engineering Daniel Guggenheim School of Aerospace Engineering

4

Mission Statement

MEDUSA will investigate the mechanisms of formation, composition, and seasonal changes of dust storms on Mars; this will be achieved through Radiometers and Multiangle Imaging SpectroRadiometers.

Science Background

The Significance of studying Martian Dust Storms

- **Better understanding of Martian Climate**
- Better understanding of the mechanisms of climate change for Earth applications

Mars Exploration Program Analysis Group interests

- Locations and times of interest for the creation of dust storms
- Analysis of aerosol type, concentration, and movement through dust storms
- How dust storms carry dust and water through the atmosphere and across the surface

Leading Theory

- Atmospheric Factors (heat, pressure) cause dust storms to form
- These dust storms transfer water ice

Credit: NASA / JPL / MSSS

MEDUSA Science

6

Goal: Explore the formation and impact of dust storms on Mars

Objectives:

- Determine how and under what conditions Martian dust storms form and propagate using MCS and MISR
- Determine how particles move within the dust storm using MISR
- Determine the composition of Martian dust storms using MISR
- Determine if and how H2O is transferred via dust storms on Mars using MISR

Sol 1997

Credit: NASA / JPL / MSSS / Justin Cowart / Emily Lakdawalla

7

Science Traceability

Science Traceability

Mars MEDUSA Orbiter

Mission Implementation

Georgia Tech College of Engineering Daniel Guggenheim School of Aerospace Engineering

Science Instruments

Multi-angle Imaging SpectroRadiometer

- 9 angled pushbroom spectroradiometers
- Captures images in 4 spectral bands from infrared to visible
- Allows analysis of aerosols, winds, and clouds

Credit: NASA / Caltech / JPL

Science Instruments

Mars Climate Sounder (MCS)

- Captures images in 9 spectral bands from infrared to visible
- Measures temperature, pressure, water vapor, and dust in layers of the atmosphere

Credit: NASA / Caltech / JPL

Spacecraft Overview

Communications Dish

Flight Computer

Star Sensor

Pressurant Tanks

> Propellant Tanks

Solar Panels

Sun Sensor

Orbital Insertion **Thrusters**

MISR

12

Concept of Operations

Launch Window: October 22nd, 2026 to November 7th, 2026 *Arrival Window:* August 4th, 2027 to September 4th, 2027

Launch Window: October 22nd, 2026 to November 7th, 2026 *Arrival Window:* August 4th, 2027 to September 4th, 2027

- Type II heliocentric transfer orbit
- Estimated TOF: 287 days
- 3 Main Burns
	- Total Δv of major burns ~ 1.6 km/s
	- Additional 0.1 km/s added for corrections

- Capture in highly elliptical insertion orbit
- Lower periapsis, raise inclination
- Raise periapsis, circularize orbit
	- \circ 700 km, i = 75 $^{\circ}$
	- 10 year lifespan
	- \circ EOL: relay satellite

GNC & ADCS

Attitude Control

- 4x Reaction Wheels
	- Slew rate: 0.045 deg/s

Reaction Wheel Credit: SpaceTeq

● Sensors

- 2x Inertial Measurement Unit (IMU)
- 2x Star tracker
- 12x Sun Sensor

Star tracker Credit: Leonardo Company

Orbit

м.

- Period: 133 minutes
- o 11 orbits per day
- Time per Eclipse: 41 minutes

● Three Power Modes:

- Standby/Eclipse **• Communications**
- o Data Collection

Data Collection Mode 745 W Thermal Control 44 W $7.1%$ Power Subsystem 266 W

43.1%

Power

- Communications 318 W 40.3%

ADCS 107 W

13.5%

Power

● Triple Junction Solar Cells

- \circ Area: 20 m²
- o Mass: 17 kg
- Power Generated: 1200 W

● Lithium Ion Batteries

- 10 years: ~40,000 Cycles
- Depth of Discharge: 30%
- Number of Cells: 99 cells
- o Mass: 11 kg

Power Management and Distribution System

- Regulated Direct-Energy Transfer
	- Higher Efficiency
	- Large power variation
- \circ Power: 160 W
- Mass: 54 kg

Wiring

- Power: 60 W
- o Mass: 33 kg

Propulsion

- Propellant Hydrazine
- Pressurizer Helium
- Thrusters:
	- Four MR-107S @ 270 N used for Complete insertion burn in 24 min
	- Four MR-106E @ 22 N used for Trajectory corrections
	- Eight MR-103D @ 0.9 N used for Attitude control redundancy
- Tanks:
	- 2 Propellant Tanks with mass of 20 kg each
	- 2 Pressure Tanks with mass of 13 kg each

Propulsion

选.

Thermal

- Ideal operating temperature = $10 °C$
- Pre trimmed thermal balance temperature $= 367 K = 94 °C$
- **Radiators used to trim temperature to** permissible component range
- 15 layer MLI blanket used on outside of spacecraft
- Heaters applied to solar panels, propulsion tanks, antennas, gimbals, IMU, star tracker

Credit: John Rossie of AerospaceEd.org

Structural Properties

- Potential loads: Launch, gravity, radiation pressure, aerobraking
- Aluminum alloy honeycomb structure
- Carbon composites such as graphite epoxy applied for additional support ● Titanium alloys used for fuel tank and smaller

components

Credit: Argosy International

Mass Breakdown

Dry Mass Range: 500-1000kg

Dry Mass: 801 kg

Propellant Mass: 1000 kg

LV Adapter: 166.5 kg

LV Capacity: 3000 kg

Allocated (kg) Level 1

Mass by Subsystem

Payload **Propulsion** ■ ADCS **Comms** $C&DH$ Thermal Control **Power** Structure

Communications

Link Budget

 $\mathbf{1}$

2

3

4

Link Schedule

Launch:

- Downlink lifeline communication begins \sim 1 hr after launch, \sim 5 minutes prior to launch vehicle separation on LGA
- When signal is received, DSN uplink is confirmed, doppler/turnaround
- ranging is defined, and commandability is confirmed.

Transit: -

2

3

4

Downlink lifeline communication continues including trajectory data and spacecraft health on HGA

● Command uplink for trajectory correction and anomaly adjustment by DSN

- Mars Orbit Insertion:
	- Downlink insertion progress, health, and anomaly data by the LGA
	- Command uplink to perform insertion maneuvers and anomaly adjustment by DSN

1. Mars Orbit

- Spacecraft downlink health data (X-Band) and and collected instrument data (Ka-Band) when line of sight is visible on HGA (LGA if in low power mode).
- Command uplinked for trajectory correction, anomaly adjustment, and to transition between mission phases by DSN

Communication Subsystems

High-gain Antenna

Ka Band and X band

2x Low-Gain Antenna

- X-Band
- Only used for insertion and emergencies

4x Amplifiers

- **•** Traveling Wave Tube Amplifiers
- Two for Ka-band (35W)
- Two for X-Band (100)

2x Transponders

General Dynamics Small Deep Space Transponder

Ultra Stable Oscillators

- Take on causes for frequency instability in circuits
- High stability vs. temperature 2x Electra Proximity Payload -
	- Government provided telecommunications platform

C&DH Schematic

- Oven Controlled Crystal Oscillator (OCXO)
- Data Processing Unit (DPU)
- Integrated Electronics Module (IEM)
- **SpaceWire**

Computing

- Processor: RAD5500
- Power Distribution Unit (PDU)
- Oven Controlled Crystal Oscillator (OCXO)

Spacecraft Integration

System Testing & Assembly Order:

- Power-
- 2. ACDS
- 3. Science Instruments
- 4. Structure
- 5. Solar Array
- 6. Communication
- 7. Propulsion

MRO Science Instrument Integration Credit: NASA

Structural Assembly:

Gimbals

1. Solar arrays 2. HGA

Type 22 High Gain Antenna Pointing Assembly Credit: MOOG

Type 1 Solar Array Drive Assembly Credit: MOOG

Launch Vehicle

- Medium Class Launch **Vehicle**
- **•** Employ 5m Fairing:
- Potential Option: Atlas V 5xx
- Two stage expendable rocket system
- Flexible with SRB usage, engine configurations, and payload fairing selection

Ground Systems & Operations

Goddard Space Flight Center Operations Room Credit: NASA Goddard/Pat Izzo

Ground Station (ie. Goddard Space Flight Center)

- sending commands
- 2. anomaly resolution
- 3. spacecraft health monitor
- 4. data processing
- ❖ Eleven 90-minute passes per day

Distributed Active Archive Center (NASA's DAAC)

34

data storage

Spacecraft Testing

Credit: National Technical Systems

Mars MEDUSA Orbiter

Project Management

Georgia Tech College of Engineering Daniel Guggenheim School of Aerospace Engineering

Organizational Structure

۸.

37

Mars MEDUSA Orbiter

Cost & **Scheduling**

Georgia Tech College of Engineering Daniel Guggenheim School of Aerospace Engineering

Cost

- Unmanned Space Vehicle Cost Model (USCM8) parametric estimation
- NASA Instrument Cost Model (NICM) for science instruments
- FY2021 Estimated Cost:
	- \$491,425,375.1

39

Risk Matrix

40

S E V E R I T Y

PROBABILITY

Mitigation: High Risks

- Risk 1 ADCS Failure (Risk Value: 20)
	- Redundancy in system components
	- Testing to simulate operational environment
- Risk 2 Transponder Failure (15)
	- MEDUSA contains a backup transponder cross linked into the system should one fail
- Risk 3 Failure to Deploy Solar Arrays (Risk Value: 15)
	- More accurate environmental testing
	- While in orbit:
		- Move mechanism up and down to "unsnag"
		- Fire thrusters to shake orbiter

Mitigation: Medium Risks

- Risk 4 Failure of Science Instrumentation (Risk Value: 10)
	- One fails:
		- Continue mission using remaining payload
	- Both fail:
- Revert to relay satellite ● Risk 5 - Unrealistic Budget (Risk Value: 10) ○ Mission descope - threshold science mission

Schedule

Acknowledgements

Dr. Christian for his instruction and feedback throughout the semester

TA Stef Crum for his guidance on labs

The New SMAD Editors: Wertz, Everett, Puschell

MISR team, MCS team, Mars Reconnaissance Team

Mars Odyssey, TERRA orbiter

Mars MEDUSA Orbiter Thank You

Georgia Tech College of Engineering Daniel Guggenheim School
of Aerospace Engineering

Mars MEDUSA Orbiter Appendix

Georgia Tech College of Engineering Daniel Guggenheim School
of Aerospace Engineering

Mass Budget

Mass Budget cont.

Cost

49

Risk Mitigation

1. ADCS Failure (Risk Value: 20)

- a. Redundancy in system components
- b. Testing to simulate operational environment
- 2. Transponder Failure (15)
	- a. MEDUSA contains a backup transponder cross linked into the system should one fail
- 3. Failure to Deploy Solar Arrays (Risk Value: 15)
	- a. More accurate environmental testing
	- b. While in orbit:
		- Move mechanism up and down to "unsnag"
		- ii. Fire thrusters to shake orbiter
- 4. Failure of Science Instrumentation (Risk Value: 10)
	- a. One fails:
	- Attempt to continue mission using other payload b. Both fail:
		- i. Revert to being relay satellite
- 5. Unrealistic Budget (Risk Value: 10)
- a. Mission descope fallback to threshold mission 6. Unplanned Loss of Contact (Risk Value: 6)
	- a. Extended Data storage
	- b. At threshold enter Safe Mode
	- c. Comms system to Wideband mode
	- 24. d. Emergency use of 70 -m DSN
- 7. Biological Contamination Risk (Risk Value:1)
	- a. Assembly in clean room with the contract of the contract of the contract of the contract of ${\bf 50}$